UNIVERSITE PARIS-SACLAY

département Physique des Ondes et de la Matière

Annexe 4 :

Quelques faits marquants 2015 de PhOM

Pôle 1 Cohérence et correlations quantiques	. 3
Pôle 2 Matière diluée, neutre ou ionisée	. 6
Pôle 3 Matière et systèmes complexes	. 7
Pôle 4 Lumière extrême	11
Pôle 5 Nanophysique	15
Pôle 6 Optique	15
Pôle 7 Matériaux : elaboration et propriétés	19

Pôle 1 Cohérence et correlations quantiques

UMPHY-Thalès:

<u>Transport cohérent sur de longues distances dans des jonctions supra haut-Tc / matériau</u> <u>ferrmagnétique semi-métallique</u> C. Visani *et al.*, <u>Nature Physics</u> 8, 539–543 (2012) (WoS: 37 citations)

En général, la supraconductivité et le ferromagnétisme sont deux phénomènes incompatibles dans un même matériau. En effet, le champ d'échange du ferromagnétique polarise le spin des électrons et brise les paires de Cooper (deux électrons de spins opposés) transportant les courants supraconducteurs. *A priori*, cet antagonisme semble donc empêcher la pénétration d'un courant supraconducteur dans un demi-métal (ferromagnétique avec 100% des porteurs de charge polarisés en spin). Ce travail montre qu'un mécanisme non-conventionnel, la réflexion d'Andreev entre particules du même spin, permet de lever cette restriction à l'interface entre un oxyde supraconducteur à haute température et un demi-métal. Ce mécanisme permet le transfert des propriétés supraconductrices aux électrons du demi-métal, créant ainsi un courant supraconducteur polarisé en spin.

LSI:

<u>Développement</u> d'approches originales pour décrire les effets de corrélation dans les <u>spectroscopies de nouvelle génération</u>

"Valence Electron Photoemission Spectrum of Semiconductors: Ab Initio Description of Multiple Satellites"

Guzzo, M., G. Lani, F. Sottile, P. Romaniello, M. Gatti, J. J. Kas, J. J. Rehr, M. G. Silly, F. Sirotti, and L. Reining, <u>Phys. Rev. Lett. 107, 166401 (2011)</u>

(WoS: 26 citations)

Ces approches permettent de montrer des effets tels que la dispersion des excitons, les effets excitoniques dans les satellites en photoémission, ou la formation d'un exciton dans l'espace et le temps.

Mise en évidence les importances respectives des mécanismes de diffusion par interaction électron-électron et électron-phonon dans la dynamique ultrarapide des électrons photoexcités

E. Papalazarou, J. Faure, J. Mauchain, M. Marsi, A. Taleb-Ibrahimi, I. Reshetnyak, A. van Roekeghem, I. Timrov, N. Vast, B. Arnaud, L. Perfetti, <u>Phys. Rev. Lett. **108**, 256808 (2012)</u> (WoS: 20 citations)

Couplage fort d'un ensemble de spins à un résonateur supraconducteur

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, <u>Phys. Rev. Lett. 105, 140502</u> (2010)

(WoS: 187 citations)

Réalisation d'un circuit quantique dans lequel un ensemble de spins électroniques est couplé à un résonateur supraconducteur. Les spins sont des centres NV dans un cristal de diamand. Le couplage fort entre les spins et le résonateur est démontré, ouvrant ainsi vers une série d'expériences couplant des spins localisés, dont le temps de cohérence quantique peut être très long, à des circuits supraconducteurs, plus faciles à adresser et à coupler.

LLB

Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2.

D. S. Inosov, J. T. Park, P Bourges, D. L. Sun, Y. Sidis, A. Schneidewind, K Hradil, D. Haug, C. T. Lin, B. Keimer, and V. Hinkov, <u>Nat. Phys. 6, 178 (2010).</u>

(WoS=157 citations)

Grâce à une technique de diffusion de neutrons, des chercheurs du Max Planck Institut et du Laboratoire Léon Brillouin ont mesuré les fluctuations magnétiques dans une des familles de supraconducteurs à base de Fer en fonction de la température. Dans l'état supraconducteur, l'appariement des électrons conduit à une profonde restructuration du spectre des fluctuations magnétiques avec l'apparition d'un pic de résonance magnétique, caractéristique d'une supraconductivité non-conventionnelle. Cette variation du spectre ne se manifeste qu'en-dessous de l'énergie nécessaire pour « briser » les paires d'électrons et indique un mécanisme magnétique pour la supraconductivité dans ces matériaux.

LCF

Localisation d'Anderson d'ondes de matière en une puis trois dimensions

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, <u>Nature 453, 891 (2008)</u>; F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, <u>Nat. Phys. 8, 398-403</u> (2012). (WoS = 88 citations)

CSNSM et LPS:

Gaz d'électrons bidimensionnel avec universal subbands à la surface de SrTiO₃

A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhès, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre, G. Herranz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthélémy, & M. J. Rozenberg. <u>Nature **189**, 189 (2011)</u>

(WoS: 179 citations)

Découverte d'un nouveau état métallique 2D à la surface de l'isolant SrTiO₃ (STO). Cet isolant est au centre de l'activité de recherche qui se développe depuis 10 ans au tour de l'électronique d'oxydes. Cette découverte inattendue a ouvert la voie pour avancer dans la fabrication de nouveaux dispositifs électroniques qui pourraient incorporer des phénomènes à fort corrélations électroniques.

LPTMS:

<u>A finite-temperature phase transition for disordered weakly interacting bosons in one dimension</u> I. L. Aleiner, B. L. Altshuler, G. V. Shlyapnikov, <u>Nature Physics</u>, **6**, 900-904 (2010)

(WoS: 58 citations)

Alors qu'on pensait que les fluctuations interdisaient l'apparition d'une transition de phase à température finie en une dimension, les auteurs ont identifié une telle transition dans un gaz de bosons unidimensionnel en interaction en présence de désordre, entre une phase fluide et une phase isolante. Cette découverte s'inscrit dans le contexte de l'étude des gaz atomiques ultrafroids soumis à un potentiel désordonné.

Pôle 2 Matière diluée, neutre ou ionisée

Autours	Titro	lournal	Citations	Annóa
Auteurs	nue	Jonnai	Citations	Annee
Bernhardt, B; Ozawa, A; Jacquet, P;				
Jacquey, M; Kobayashi, Y; Udem, T;	Cavity-enhanced dual-comb		120	2010
Holzwarth, R; Guelachvili, G; Hansch, TW;	spectroscopy	NATURE PHOTONICS	120	2010
Picque N				
Wakalam V/ Smith JW/M: Harbet E: Trop				
	Reaction Networks for Interstellar			
J; Geppert, W; Linnartz, H; Oberg, K;	Chemical Modelling: Improvements	SPACE SCIENCE REVIEWS	70	2010
Roueff, E; Agundez, M; Pernot, P; Cuppen,	and Challenges		,,,	2010
HM; Loison, JC; Talbi, D	and Chantenges			
Glownia IM: Cryan I: Andreasson I:				
Bolkacom A: Borrah N: Blaga Cl.				
Derkacelli, A, Derlall, N, Diaga, Ci,				
Bostedt, C; Bozek, J; DiMauro, LF; Fang, L;				
Frisch, J; Gessner, O; Guhr, M; Hajdu, J;				
Hertlein, MP; Hoener, M; Huang, G;	Time-resolved pump-probe			
Kornilov, O: Marangos, JP: March, AM:	experiments at the LCLS	OPTICS EXPRESS	56	2010
McEarland RK: Mardii, H: Datrovic VS:				
Raman, C; Ray, D; Reis, DA; Trigo, M;				
White, JL; White, W; Wilcox, R; Young, L;				
Coffee, RN; Bucksbaum, PH				
	Excited state hydrogen transfer			
	dure mission in substitute durban els and			
Pino, GA; Oldani, AN; Marceca, E; Fujii, M;	dynamics in substituted phenois and	JOURNAL OF CHEMICAL		
Ishiuchi, SI; Miyazaki, M; Broquier, M;	their complexes with ammonia: pi pi*-	DHVSICS	51	2010
Dedonder, C; Jouvet, C	pi sigma* energy gap propensity and	1115103		
	ortho-substitution effect			
	Classical Valence Bond Annroach by			
Wu, W; Su, PF; Shaik, S; Hiberty, PC	Madam Mathada	CHEMICAL REVIEWS	52	2011
	Modern Methods			
Cocinero, EJ; Carcabal, P; Vaden, TD;	Sensing the anomeric effect in a	NATURE	42	2011
Simons, JP; Davis, BG	solvent-free environment		72	2011
Schliesser, A: Picque, N: Hansch, TW	Mid-infrared frequency combs	NATURE PHOTONICS	101	2012
· · · · · · · · · · · · · · · · · · ·	On atmospheric-pressure pon-			
Lu Viloroussi Mi Dussh V	a suilibrium plasma ista and plasma	PLASMA SOURCES SCIENCE	00	2012
Lu, X; Laroussi, M; Puech, V	equinonum plasma jets and plasma	& TECHNOLOGY	90	2012
	bullets			
Wakalam V. Harbet E. Laisan IC. Smith				
Wakeralli, V, Herbst, E, Lorson, JC, Silliti,				
IWM; Chandrasekaran, V; Pavone, B;				
Adams, NG; Bacchus-Montabonel, MC;				
Bergeat, A; Beroff, K; Bierbaum, VM;				
Chabot, M: Dalgarno, A: van Dishoeck, EF:				
Faura A: Connort WD: Carlich D: Calli	A KINETIC DATABASE FOR	ASTROPHYSICAL JOURNAL	07	2012
raule, A, deppert, WD, definiti, D, dain,	ASTROCHEMISTRY (KIDA)	SUPPLEMENT SERIES	02	2012
D; Hebrard, E; Hersant, F; Hickson, KM;				
Honvault, P; Klippenstein, SJ; Le Picard, S;				
Nyman, G; Pernot, P; Schlemmer, S;				
Selsis, F: Sims, IR: Talhi, D: Tennyson, I:				
Troa I: Waster P: Wiesenfeld I				
noe, J, wester, R, wiesemeru, L				
Samukawa, S; Hori. M: Rauf. S:				
Tachibana K Bruggeman P Kroesen G				
whitehead, JC; Murphy, AB; Gutsol, AF;	The 2012 Plasma Roadmap	JOURNAL OF PHYSICS D-	74	2012
Starikovskaia, S; Kortshagen, U; Boeuf,		APPLIED PHYSICS		-
JP; Sommerer, TJ; Kushner, MJ; Czarnetzki,				
U: Mason. N				
	DESIRS: a state-of-the-art VIIV			
Nahon, L; de Oliveira, N; Garcia, GA; Gil,				
JF; Pilette, B; Marcouille, O; Lagarde, B;	beamine realuring nigh resolution	JOURNAL OF SYNCHROTRON	50	2012
Polack F	and variable polarization for	RADIATION		
	spectroscopy and dichroism at SOLEIL			
	Quadruple bonding in C-2 and			
Shaik, S; Danovich, D; Wu, W; Su, PF;	analogous eight-valence electron	NATURE CHEMISTRY	30	2012
Rzepa, HS; Hiberty, PC			33	2012
	species			
Miron, C; Nicolas, C; Travnikova, O; Morin,	Imaging molecular potentials using			
P; Sun, YP; Gel'mukhanov, F; Kosugi, N;	ultrahigh-resolution resonant	NATURE PHYSICS	33	2012
Kimberg, V	photoemission			
Wang, CY: Herr, T: Del'Have, P: Schliesser	Mid-infrared optical frequency combs			
A: Hofer I: Holzwarth R: Hansch TM/:	at 2.5 mum based on crystalline	NATURE COMMUNICATIONS	27	2012
Diseus N. King - T	at 2.5 mu in based on crystannie		21	2015
Picque, N; Kippenberg, IJ	microresonators	1	8	

Pôle 3 Matière et systèmes complexes

FAIT MARQUANT #1 :

Un exemple de matière active

L'émergence d'un ordre au sein d'une assemblée d'objets en interaction est toujours fascinante à étudier. L'observateur est alors face à de nombreuses questions sur l'origine profonde de cet ordre et les conditions de son apparition. Il est ainsi observé l'apparition de mouvements collectifs à deux dimensions de filaments polymériques déplacés par des moteurs moléculaires. Par une étude statistique du phénomène, il a été possible de remonter aux interactions élémentaires à l'échelle moléculaire responsables de cette organisation. Ce résultat, publié dans la revue Nature (Sumino et al., <u>Large-scale vortex lattice emerging from collectively</u> <u>moving microtubules</u>, NATURE Volume: 483 Issue: 7390 Pages: 448-452(2012)) montre que, dans le cas présent d'objets biologiques, des interactions locales simples peuvent être à l'origine de phénomènes émergeants complexes.

a) Formation des vortex. Barre d'échelle: 500 um, soit environ 40 fois la longueur des microtubules b) Vue générale du système après 30 minutes. Barre d'échelle: 2 mm

La physique de la matière active est un nouveau domaine de recherche qui traite de toutes les situations dans lesquelles de l'énergie est dépensée localement pour produire un mouvement cohérent, plus ou moins persistant. Ces situations nombreuses se présentent à toutes les échelles dans la nature comme dans des systèmes artificiels, depuis les mouvements de grands groupes d'animaux, d'essaims de robots, de colonies de bactéries ou d'amibes, de cellules biologiques au sein d'un organisme, jusqu'au niveau intra-cellulaire où les moteurs moléculaires, protéines transformant de l'énergie chimique en travail mécanique, sont responsables du transport et de l'organisation à grande échelle de la cellule.

C'est dans ce dernier contexte que des expériences *in vitro* bien contrôlées sont désormais possibles : des composants biologiques purifiés, provenant de cellules vivantes, sont mélangés de manière précise et les phénomènes coopératifs résultants sont observés, via un marquage fluorescent standard, au microscope.

L'expérience réalisée dans le groupe du professeur Kazuhiro Oiwa de <u>l'Advanced ICT Research Institute de Kobe</u> (<u>Japon</u>) a consisté à mélanger des microtubules (filaments polymériques assez rigides participant notamment à la cohérence du cytosquelette) et des moteurs de types dynéines¹ fixés à un substrat rigide. En présence d'ATP, les têtes des moteurs agrippent et poussent collectivement les filaments, qui se déplacent alors régulièrement dans un mouvement essentiellement bi-dimensionnel. Si la densité de moteurs attachés et celle des microtubules accrochés sont grandes, on observe en quelques minutes, de manière très spectaculaire, la formation d'un réseau de vortex de très grande taille (400 μ m de diamètre) par rapport à la longueur des filaments (environ 10 μ m).

Sous la direction d'Hugues Chaté (IRAMIS/SPEC, CEA-Saclay), le dépouillement d'expériences supplémentaires ainsi qu'une modélisation semi-quantitative, ont permis de montrer que seuls deux ingrédients simples étaient à l'origine du mouvement collectif organisé en réseau de vortex : le mouvement persistant et sinueux des microtubules isolés et leur alignement nématique lors de collisions.

Cet ensemble de résultats est une première dans le domaine car il a permis de montrer clairement sur un cas "réel" ce qui n'est souvent qu'un acquis, voir un présupposé, théorique de la physique statistique moderne : un très petit nombre de mécanismes simples suffisent à rendre compte quantitativement de phénomènes émergeants complexes. Au delà de cette satisfaction intellectuelle, ces résultats ont à priori une grande pertinence en biologie, notamment pour la compréhension de la rigidité des cellules végétales, et pourraient être exploités dans le domaine des bio-matériaux.

FAIT MARQUANT #2 :

Nanocomposites renforcés : des systèmes modèles pour décrire le comportement mécanique des pneumatiques

Jacques Jestin, Nicolas Jouault, Chloé Chevigny

, François Boué, Laboratoire Léon Brillouin,

CEA Saclay (Chevigny, Chloe; Jouault, Nicolas; Dalmas, Florent; et al.

JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS Volume: 49 Issue: 11 Pages: 781-791 Published: JUN 1 2011)

Un moyen d'améliorer les propriétés mécaniques des matériaux plastiques est de les renforcer par des nanoparticules, en formant ainsi un matériau composite. Une étude structurale détaillée par diffusion de neutrons, couplée à des essais mécaniques, d'échantillons de polystyrène renforcés par des grains de silice a été réalisée au Laboratoire Léon Brillouin (LLB) au CEA Saclay. Cette étude montre toute l'importance de savoir maîtriser la distribution des particules entrant dans la composition du matériau. Une solution originale au problème par le greffage de petites chaînes de polymère à la surface des particules est aussi étudiée. Cette étude modèle trouve de nombreuses applications, en particulier dans le domaine du pneumatique.Les matériaux plastiques sont faits de molécules enchevêtrées ou polymères qui, selon les cas, peuvent être mous/visqueux, durs/cassants ou déformables (élastomères, caoutchouc...). Ces matériaux présentent une large gamme de propriétés mécaniques (renforcement, adhésion, résistance à la rupture), thermiques (isolant), électriques (conductivité), optiques (couleur), permettant des applications dans divers secteurs industriels tels que les pneumatiques, les peintures, le pétrole ou les emballages alimentaires...

Ces propriétés remarquables peuvent être améliorées par inclusion au sein du matériau de particules formant ainsi des nanocomposites. Les particules doivent être les plus petites possibles (nanoparticules ~1 nanomètre = 10^{-9} mètre) : à cette échelle, les interactions spécifiques particules-particules et particules-polymère vont en effet permettre la mise en place d'organisations nouvelles des charges (dispersion individuelle, amas (agrégats), réseau connecté) et une plus grande affinité entre le polymère et les particules qui vont conduire à de nouvelles propriétés macroscopiques des matériaux. Les modèles mécaniques classiques, qui n'incluent pas ces contributions spécifiques, peinent actuellement à décrire correctement le comportement mécanique des nanocomposites. Il faut donc, via des systèmes modèles, pouvoir dissocier la contribution de chacun des composants (particules et chaînes de polymère) sur la réponse mécanique du matériau.

Les systèmes modèles sont constitués de nanoparticules de silice dispersées dans une matrice de polystyrène. En fonction de la concentration, les particules peuvent former des petits amas non connectés entre eux ou à plus haute concentration un réseau de charge continu.

Courbes de contrainte-déformation (à droite) en fonction de la concentration en particules illustrant le renforcement du matériau avec l'accroissement de la charge (de 0 à 15%) en nanoparticules de silice.

Les échantillons ont été étudiés par diffraction de neutrons au laboratoire Léon Brillouin afin de déterminer leur structure moléculaire. En observant la diffusion aux petits angles, on observe l'organisation de la matière sur de plus grandes distances ce qui donne accès à la distribution des nanoparticules. Technique spécifique aux études par diffusion de neutrons, l'étude d'un mélange de chaînes hydrogénées et deutérées, permet de déterminer où sont les chaînes et la forme elles adoptent.

Dans le cas des applications pneumatiques, le matériau composite utilisé est soumis à de très fortes contraintes mécaniques. Ainsi, en parallèle aux études structurales par diffusion de neutrons, les propriétés mécaniques du matériau modèle ont été étudiées. On observe en particulier au seuil de connectivité des charges une divergence du facteur de renforcement mécanique (rapport des modules élastiques avec et sans charge de silice) du matériau, ce qui montre la corrélation directe entre la structure à l'échelle nanométrique et la réponse macroscopique du matériau. En parallèle, on détermine par diffusion des neutrons la conformation moyenne des chaînes de polymère. On montre que cette conformation n'est pas affectée par la présence des particules et qu'en conséquence la déformation des chaînes ne contribue pas au renforcement du matériau.

Spectre de diffusion de neutrons (DNPA) donnant la conformation des chaînes au sein du composite : quelque soit le taux de particules et de déformation et la masse des chaînes, celles-ci se déforment de la même manière, avec ou sans charge.

Le greffage de petites chaînes de polymère à la surface des particules, offre un moyen supplémentaire de contrôle de la dispersion des particules dans la matrice. En fonction de l'organisation des particules (agrégées ou dispersées), les chaînes greffées (observées par diffusion de neutrons) sont plus ou moins comprimées. Le renforcement mécanique est réduit dans ce cas, à cause de la déformation des chaînes aux interfaces avec les particules.

En conclusion, cette étude montre la corrélation entre la distribution d'une charge de nanoparticules et le renforcement mécanique d'un matériau plastique. Pour un meilleur renforcement, les nanoparticules doivent

être dispersées et en densité suffisante pour être connectées. Le meilleur contrôle de la dispersion de la charge par le greffage de polymères sur les grains de silice réduit cependant le renforcement mécanique.

FAIT MARQUANT #3:

Modèle de champ de phase incluant de la dissipation d'interface

En solidification rapide il est nécessaire de développer des modèles qui soient aussi pertinents loin de l'équilibre. Dans ces transformations de phase rapides les interfaces sont souvent loin de l'équilibre et le potentiel chimique peut subir un saut à l'interface. Dans ce travail publié dans <u>Acta Materialia Volume 60, Issues</u> 6–7, April 2012, Pages 2689–2701, M.Plapp du LPMC (Ecole polytechnique) et ses collaborateurs ont développé un modèle de champ de phase qui prend en compte les différences de concentrations de part et d'autre de l'interface. Les deux champs de concentrations sont alors liés par une équation cinétique qui décrit l'échange des composants enrte les phases au lieu d'un simple équilibre de partitionnement. Pour un échange rapide entre les phases les potentiels chimiques sont égaux dans les deux phases en coexistence tandis que dans la limite opposée un comportement de fort non-équilibre peut être modélisé. Ceci est illustré sur la figure par des comparaisons flatteuses entre des simulations de la ségrégation d'un soluté, un calcul issu du présent travail et des résultats expérimentaux.

Pôle 4 Lumière extrême

• <u>Phare Attoseconde</u>

Une collaboration entre les chercheurs de l'IRAMIS et du Laboratoire d'Optique Appliqué (LOA) annonce la découverte d'un nouveau procédé d'une grande simplicité pour la génération d'une impulsion attoseconde unique, basé sur la génération d'harmoniques en présence d'une rotation ultrarapide du front d'onde de l'impulsion laser incidente. Il est ainsi possible aujourd'hui de disposer d'une source de lumière particulièrement bien adaptée aux expériences pompe-sonde permettant l'exploration de la dynamique électronique.

En utilisant des impulsions laser de quelques cycles optiques (5 fs), fortement focalisées sur une cible solide à une intensité de l'ordre de 10¹⁸ W/cm², des impulsions attoseconde sont obtenues par réflexion sur le "miroir plasma" généré à la surface de la cible, par un mécanisme appelé "émission cohérente de sillage". En introduisant une très faible dispersion angulaire sur le faisceau laser avant focalisation, les équi^pes due l'Université paris-Saclay ont pu observer pour la première fois, et conformément aux simulations, un "phare attoseconde", émettant trois à quatre faisceaux XUV séparés spatialement, et ne contenant chacun qu'une impulsion attoseconde unique.

Cet effet ouvre de nouvelles perspectives pour la nouvelle science attoseconde, en plein développement depuis 10 ans. En permettant d'obtenir, à partir d'une seule impulsion laser, plusieurs impulsions attoseconde isolées, sous forme de faisceaux bien séparés angulairement et parfaitement synchrones, les phares attoseconde constituent des sources de lumière idéales pour les futures expériences pompe-sonde visant à étudier la dynamique électronique dans la matière. J. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, and F. Quéré, Nature Photonics, 6 (2012) 829

• L'auto-injection longitudinale découverte par analyse du rayonnement betaton

Le rayonnement betatron, produit lorsque les électrons oscillent dans le champ électrique transverse du laser, permet d'obtenir des informations sur le faisceau d'électrons de manière simple et non invasive car il dépend directement des conditions d'injection des électrons dans la zone accélératrice. Le mécanisme d'injection le plus simple est l'auto injection qui a lieu lorsque l'onde de sillage est suffisamment forte pour piéger des électrons dans la cavité accélératrice. En utilisant une cellule de gaz de longueur variable, les chercheurs ont pu mettre en évidence deux modes différents d'auto injection. Pour des faibles longueurs, le paquet d'électrons accélérés est quasi-monoénergétique et de faible charge, alors que pour de grandes longueurs, son spectre est large et sa charge importante. Ceci montre que deux injections successives ont lieu au cours de la propagation du laser dans le plasma.

Le profil angulaire du rayonnement betatron produit par les oscillations transverses des électrons dépend des propriétés transverses du paquet d'électrons. Les profils produits par les paquets de forte charge sont fortement asymétriques et fluctuent tir-à-tir. Ceci est compatible avec le mécanisme d'injection transverse, où les électrons circulent autour de la cavité ionique pour y être injectés à l'arrière. Par ce mécanisme, tous les électrons acquièrent une énergie transverse similaire mais ont une distribution en impulsion transverse non gaussienne, propriété qui directement transférée au profil du rayonnement betatron. Les fluctuations tir-à-tir s'expliquent par la forte dépendance de ce mécanisme à la forme de l'impulsion laser.

Le mécanisme d'injection longitudinale a été observé dans des simulations PIC et a lieu lorsque

Figure 4 | X-ray beam angular profiles for $n_e \sim 1.1 \times 10^{19}$ cm⁻³. Typical angular profiles emitted by the low-charge bunch for $L \sim 1.2$ mm (a-d) and the high-charge bunch for $L \sim 4$ mm (e-h). The field of view in each image is 44 mrad x 44 mrad and the colour scale gives the number of counts recorded by the X-ray charge-coupled device, divided by 1,000. Photon noise is reduced by a mean filter, and contour lines at 50, 90 and 98% are shown for each image. Transverse axis \hat{x} and \hat{y} are defined in d, where \hat{x} is the laser polarization direction. (i) Lineout in the \hat{y} direction (integrated over 2.25 mrad in the \hat{x} direction) of image d and h, and a Gaussian fit of the d lineout.

l'amplitude de l'onde plasma est suffisamment forte pour permettre un déferlement longitudinale et ainsi le piégeage d'électrons. Les conditions nécessaires sont produites par l'auto-focalisation et l'auto compression de l'impulsion laser au début de la propagation. Par ce mécanisme, les trajectoires d'injection des électrons sont peu sensibles à la forme de l'impulsion laser puisque ces derniers restent proches de l'axe, ce qui explique la forte stabilité tir-à-tir du profil betatron.

Le paquet d'électrons accélérés par ce mécanisme d'auto-injection longitudinale possède, malgré sa faible charge (qq pC) des propriétés très intéressantes en vue de certaines applications : très bonne stabilité tir-à-tir, faible émittance, accordabilité en énergie et faible dispersion en énergie.

Ref : S Corde, C Thaury, A Lifschitz, G Lambert, K Ta Phuoc, X Davoine, R Lehe, D Douillet, A Rousse and V Malka, Nat. Comm .4, 1501 (2013)

• <u>Amplification d'une impulsion laser sub-</u> picosecondes par l'instabilité de diffusion Brillouin

Les instabilités de diffusion stimulées ont des conséquences plutôt néfastes pour le couplage laser plasma dans le contexte de la fusion par laser. Cet exemple d'une collaboration entre le LULI CPHT de l'Ecole et le Polytechnique montre. pourtant, que l'instabilité de diffusion Brillouin peut être utilisée pour amplifier des impulsions laser d'une durée sub-picoseconde par transfert d'énergie.

Suite à la modélisation théorique et numérique, l'expérience conduit au laboratoire LULI a démontré qu'un faisceau sonde a pu être amplifie dans un plasma de jet de gaz dans le régime du couplage fort de l'instabilité Brillouin, provoque par l'excitation d'une onde plasma sonore de large bande. L'optimisation de ce schéma d'amplification – qui a déclenché plusieurs autres études – est en cours et est prometteur aussi pour des installations futures.

Spectre du faisceau sonde après amplification par transfert d'énergie, comparaison avec et sans faisceau de pompe, polarisation alignée ou croisée entre sonde et pompe. L. Lancia et al., Phys. Rev. Lett. 104, 025001 (2010).

• <u>"Ultrafast surface carrier dynamics in the topological insulator Bi2Te3 "</u>

La photoémission angulaire avec une sources laser femtoseconde permet d'observer en temps réel la dynamique des bandes électroniques. Cette méthode permet l'observation directe de l'évolution des électrons de surface, qui dans les isolants topologiques sont organisés dans des bandes avec une structure particulière —le cône de Dirac. Cette étude sur les matériaux de la famille Bi₂Te₃ et Bi₂Te₂Se, ont montré que l'on peut générer avec la lumière des états électroniques fortement hors équilibre et avec une durée de vie exceptionnellement longue, ce qui est sans précédent pour un état métallique.

ARPES image acquired along the Γ K direction in s polarization with the 6.3 eV laser source. (b) Pictorial view of the experiment; the infrared laser pump excites electrons from the sample valence band (orange) into the empty conduction band (light blue). The subsequent carrier flow produces a transient variation in the charge population in the surface Dirac cone, both for empty (blue) and filled (red) electronic states and is probed by the ultraviolet probe. M. Hajlaoui et al. Nano Letters, 12, 3532 (2012)

Pôle 5 Nanophysique

Publications très citées

Autours	Titre	lournal	Citations	Année
Lalmi, B: Oughaddou, H: Enriquez, H:	inte	Journal	creations	Annee
Kara, A: Vizzini, S: Ealet, B: Aufray, B	Epitaxial growth of a silicene sheet	APPLIED PHYSICS LETTERS	301	2010
Claudon, J: Bleuse, J: Malik, NS: Bazin, M:	A highly efficient single-photon source			
Jaffrennou, P: Gregersen, N: Sauvan, C:	based on a quantum dot in a photonic	NATURE PHOTONICS	293	2010
Jalanne, P: Gerard, IM	nanowire			
	Granhene-like silicon nanoribbons on			
Aufray, B; Kara, A; Vizzini, S; Oughaddou,	$\Delta g(110)$: A possible formation of	APPLIED PHYSICS LETTERS	252	2010
H; Leandri, C; Ealet, B; Le Lay, G	silicana		2.52	2010
Garcia V: Bibes M: Bocher L: Valencia	sincene			
S: Kronast E: Crassous A: Mova Y: Enour-				
Vedrenne St Gloter At Imhoff Dt	Ferroelectric Control of Spin	SCIENCE	239	2010
December C. Mathur, ND: Eucil, S.	Polarization	SCIENCE	230	2010
Bouzebouzee, K: Barthelemy, A				
Doucco A Sufferenski la Bovoratos A				
Visha Orlamaitra ArSamaa Ir Blach Ir	Ultrabright source of entangled	NATURE	212	2010
Veisin P: Sepallart P	photon pairs	NATORE	212	2010
Personal C. Ceneres, P. Matteres, D. Sweil				
Barraud, C; Seneor, P; Mattana, R; Fusii,	Unravelling the role of the interface			
S; Bouzehouane, K; Deranlot, C; Graziosi,	for spin injection into organic	NATURE PHYSICS	209	2010
P; Hueso, L; Bergenti, I; Dediu, V; Petroff,	semiconductors			
F; Fert, A				
Mannini, M; Pineider, F; Danieli, C; Totti,	Quantum tunnelling of the			
F; Sorace, L; Sainctavit, P; Arrio, MA;	magnetization in a monolaver of	NATURE	184	2010
Otero, E; Joly, L; Cezar, JC; Cornia, A;	oriented single-molecule magnets			
Sessoli, R				
Caviglia, AD; Gabay, M; Gariglio, S;	Tunable Rashba Spin-Orbit Interaction	PHYSICAL REVIEW LETTERS	178	2010
Reyren, N; Cancellieri, C; Triscone, JM	at Oxide Interfaces			
De Padova, P; Quaresima, C; Ottaviani, C;				
Sheverdyaeva, PM; Moras, P; Carbone, C;	Evidence of graphene-like electronic	APPLIED PHYSICS LETTERS	164	2010
Topwal, D; Olivieri, B; Kara, A;	signature in silicene nanoribbons		104	2010
Oughaddou, H; Aufray, B; Le Lay, G				
Wertz, E; Ferrier, L; Solnyshkov, DD;	Spontaneous formation and ontical			
Johne, R; Sanvitto, D; Lemaitre, A;	manipulation of extended polariton	NATURE PHYSICS	163	2010
Sagnes, I; Grousson, R; Kavokin, AV;	condensates		105	2010
Senellart, P; Malpuech, G; Bloch, J	condensates			
	Low-platinum and platinum-free	ENERGY & ENVIRONMENTAL		
Morozan, A; Jousselme, B; Palacin, S	catalysts for the oxygen reduction	SCIENCE	209	2011
	reaction at fuel cell cathodes	SCENCE		
Santander-Syro AE: Conie, O: Kondo, T:				
Fortuna E: Bailbas S: Webt B: Oiu XG:				
Portran, F, Parmes, S, Went, R, Old, NG,	Two-dimensional electron gas with			
A Lo Forro Di Horronz Gi Ribos Mi	universal subbands at the surface of	NATURE	181	2011
Rouron Nu Aportet Vulescour Du	SrTi O3			
Reyfell, N, Aperlet, T, Lecoeur, P,				
Barthelemy, A; Rozenberg, IVD				
Season C Dieu O Thomast II	Devenubicin Londod Manastic			
Sanson, C, Diou, O, Thevenot, J,	Doxordbicin Loaded Magnetic			
S. Thiaudiara, E. Tan, S. Brisson, A.	Polymersomes: Ineranostic	ACS NANO	148	2011
S; Infaddrefe, E; Ian, S; Brisson, A;	Nanocamers for Wik Imaging and			
Dupuis, V; Sandre, O; Lecommandoux, S	Magneto-Chemotherapy			
Reminue C.Comie T.Alexanders A	Biological Applications of Rare-Earth		100	2011
Bouzigues, C; Gacoin, I; Alexandrou, A	Based Nanoparticles	ACS NANO	138	2011
Piles M Mills and JE. Parthology A	Ultrathin oxide films and interfaces		4.00	2014
Bibes, M; Villegas, JE; Barthelemy, A	for electronics and spintronics	ADVANCES IN PHYSICS	128	2011
Valencia, S; Crassous, A: Bocher, L:				
Garcia, V; Moya, X; Cherifi, RO: Deranlot.				
C: Bouzehouane, K: Fusil, S: Zobelli, A:	Interface-induced room-temperature			
Gloter, A: Mathur, ND: Gaupp, A:	multiferroicity in BaTiO3	NATURE MATERIALS	124	2011
Abrudan, R: Radu, F: Barthelemy, A				
Bibes M				
Amo, A: Pigeon, S: Sanvitto, D: Sala, VG:				
Hivet R: Carusotto L: Pisapello F:	Polariton Superfluids Reveal Quantum			
Lemenager G Houdre P Giacobina E	Hydrodynamic Solitons	SCIENCE	117	2011
Ciuti, C: Bramati, A	ingaroaynamic sontons			

Auteurs	Titre	lournal	Citations	Année
Vogt, P; De Padova, P; Quaresima, C; Avila, J; Frantzeskakis, E; Asensio, MC; Resta, A; Ealet, B; Le Lay, G	Silicene: Compelling Experimental Evidence for Graphenelike Two- Dimensional Silicon	PHYSICAL REVIEW LETTERS	567	2012
Kara, A; Enriquez, H; Seitsonen, AP; Voon, LCLY; Vizzini, S; Aufray, B; Oughaddou, H	A review on silicene - New candidate for electronics	SURFACE SCIENCE REPORTS	182	2012
Dlubak, B; Martin, MB; Deranlot, C; Servet, B; Xavier, S; Mattana, R; Sprinkle, M; Berger, C; De Heer, WA; Petroff, F; Anane, A; Seneor, P; Fert, A	Highly efficient spin transport in epitaxial graphene on SiC	NATURE PHYSICS	95	2012
Chanthbouala, A; Garcia, V; Cherifi, RO; Bouzehouane, K; Fusil, S; Moya, X; Xavier, S; Yamada, H; Deranlot, C; Mathur, ND; Bibes, M; Barthelemy, A; Grollier, J	A ferroelectric memristor	NATURE MATERIALS	94	2012
Cobo, S; Heidkamp, J; Jacques, PA; Fize, J; Fourmond, V; Guetaz, L; Jousselme, B; Ivanova, V; Dau, H; Palacin, S; Fontecave, M; Artero, V	A Janus cobalt-based catalytic material for electro-splitting of water	NATURE MATERIALS	94	2012
Vivien, L; Polzer, A; Marris-Morini, D; Osmond, J; Hartmann, JM; Crozat, P; Cassan, E; Kopp, C; Zimmermann, H; Fedeli, JM	Zero-bias 40Gbit/s germanium waveguide photodetector on silicon	OPTICS EXPRESS	85	2012
Thiaville, A; Rohart, S; Jue, E; Cros, V;	Dynamics of Dzyaloshinskii domain	EPL	83	2012
Iveland, J; Martinelli, L; Peretti, J; Speck, JS; Weisbuch, C	Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop	PHYSICAL REVIEW LETTERS	120	2013
Fert, A; Cros, V; Sampaio, J	Skyrmions on the track	NATURE NANOTECHNOLOGY	106	2013
Hahn, C; de Loubens, G; Klein, O; Viret, M; Naletov, VV; Ben Youssef, J	Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta	PHYSICAL REVIEW B	74	2013
Sampaio, J; Cros, V; Rohart, S; Thiaville, A; Fert, A	Nucleation, stability and current- induced motion of isolated magnetic skyrmions in nanostructures	NATURE NANOTECHNOLOGY	66	2013
Bocquillon, E; Freulon, V; Berroir, JM; Degiovanni, P; Placais, B; Cavanna, A; Jin, Y; Feve, G	Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources	SCIENCE	65	2013
Urbaszek, B; Marie, X; Amand, T; Krebs, O; Voisin, P; Maletinsky, P; Hogele, A; Imamoglu, A	Nuclear spin physics in quantum dots: An optical investigation	REVIEWS OF MODERN PHYSICS	65	2013
Georges, A; de' Medici, L; Mravlje, J	Strong Correlations from Hund's Coupling	ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 4	64	2013
Andreiadis, ES; Jacques, PA; Tran, PD; Leyris, A; Chavarot-Kerlidou, M; Jousselme, B; Matheron, M; Pecaut, J; Palacin, S; Fontecave, M; Artero, V	Molecular engineering of a cobalt- based electrocatalytic nanomaterial for H-2 evolution under fully aqueous conditions	NATURE CHEMISTRY	63	2013
Hicks, J; Tejeda, A; Taleb-Ibrahimi, A; Nevius, MS; Wang, F; Shepperd, K; Palmer, J; Bertran, F; Le Fevre, P; Kunc, J; de Heer, WA; Berger, C; Conrad, EH	A wide-bandgap metal-semiconductor- metal nanostructure made entirely from graphene	NATURE PHYSICS	60	2013

Pôle 6 Optique Publications très citées

Auteurs	Titre	Journal	Citations	Année
Rousseau, E; Siria, A; Jourdan, G; Volz, S; Comin, F: Chevrier, I: Greffet, II	Radiative heat transfer at the nanoscale	NATURE PHOTONICS	208	2009
Friedler, I; Sauvan, C; Hugonin, JP; Lalanne, P; Claudon, J: Gerard, JM	Solid-state single photon sources: the nanowire antenna	OPTICS EXPRESS	95	2009
Lugan, P; Aspect, A; Sanchez-Palencia, L; Delande, D; Gremaud, B; Muller, CA; Miniatura, C	One-dimensional Anderson localization in certain correlated random potentials	PHYSICAL REVIEW A	57	2009
Agha, IH; Okawachi, Y; Gaeta, AL	Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres	OPTICS EXPRESS	52	2009
Yu, LW; O'Donnell, B; Alet, PJ; Conesa-Boj, S; Peiro, F; Arbiol, J; Cabarrocas, PIR	Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts	NANOTECHNOLOGY	52	2009
Ossikovski, R	Analysis of depolarizing Mueller matrices through a symmetric decomposition	JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A- OPTICS IMAGE SCIENCE AND VISION	47	2009
Claudon, J; Bleuse, J; Malik, NS; Bazin, M; Jaffrennou, P; Gregersen, N; Sauvan, C; Lalanne, P; Gerard, JM	A highly efficient single-photon source based on a quantum dot in a photonic nanowire	NATURE PHOTONICS	313	2010
Tittel, W; Afzelius, M; Chaneliere, T; Cone, RL; Kroll, S: Moicony, SA: Sellare, M	Photon-echo quantum memory in solid	LASER & PHOTONICS REVIEWS	132	2010
Comparat, D; Pillet, P	Dipole blockade in a cold Rydbergatomic sample [Invited]	JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B- OPTICAL PHYSICS	95	2010
O'Faolain, L; Schulz, SA; Beggs, DM; White, TP; Spasenovic, M; Kuipers, L; Morichetti, F; Melloni, A; Mazoyer, S; Hugonin, JP; Lalanne, P; Krauss, TF	Loss engineered slow light waveguides	OPTICS EXPRESS	91	2010
Colman, P; Husko, C; Combrie, S; Sagnes, I; Wong, CW: De Rossi, A	Temporal solitons and pulse compression in photonic crystal waveguides	NATURE PHOTONICS	74	2010
Antonelli, MR; Pierangelo, A; Novikova, T; Validire, P; Benali, A; Gayet, B; De Martino, A	Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data	OPTICS EXPRESS	50	2010
Aptel, F; Olivier, N; Deniset-Besseau, A; Legeais, JM; Plamann, K; Schanne-Klein, MC; Beaurepaire, E	Multimodal Nonlinear Imaging of the Human Cornea	INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE	50	2010
Kewish, CM; Guizar-Sicairos, M; Liu, CA; Qian, J; Shi, B; Benson, C; Khounsary, AM; Vila- Comamala, J; Bunk, O; Fienup, JR; Macrander, AT; Assoufid, L	Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data	OPTICS EXPRESS	48	2010
Todorov, Y; Tosetto, L; Teissier, J; Andrews, AM; Klang, P; Colombelli, R; Sagnes, I; Strasser, G; Sirtori, C	Optical properties of metal-dielectric-metal microcavities in the THz frequency range	OPTICS EXPRESS	48	2010
Cattoni, A; Ghenuche, P; Haghiri-Gosnet, AM; Decanini, D; Chen, J; Pelouard, JL; Collin, S	lambda(3)/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography	NANO LETTERS	66	2011
Pierangelo, A; Benali, A; Antonelli, MR; Novikova, T; Validire, P; Gayet, B; De Martino, A	Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging	OPTICS EXPRESS	60	2011
Sanvitto, D; Pigeon, S; Amo, A; Ballarini, D; De Giorgi, M; Carusotto, I; Hivet, R; Pisanello, F; Sala, VG; Guimaraes, PSS; Houdre, R; Giacobino, E; Ciuti, C; Bramati, A; Gigli, G	All-optical control of the quantum flow of a polariton condensate	NATURE PHOTONICS	56	2011
Daniault, L; Hanna, M; Lombard, L; Zaouter, Y; Mottay, E; Goular, D; Bourdon, P; Druon, F; Georges, P	Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers	OPTICS LETTERS	54	2011
Biehs, SA; Ben-Abdallah, P; Rosa, FSS; Joulain, K; Greffet, JJ	Nanoscale heat flux between nanoporous materials	OPTICS EXPRESS	48	2011
Ossikovski, R	Differential matrix formalism for depolarizing anisotropic media	OPTICS LETTERS	47	2011
Vivien, L; Polzer, A; Marris-Morini, D; Osmond, J; Hartmann, JM; Crozat, P; Cassan, E; Kopp, C; Zimmermann, H; Fedeli, JM	Zero-bias 40Gbit/s germanium waveguide photodetector on silicon	OPTICS EXPRESS	95	2012
Bouchon, P; Koechlin, C; Pardo, F; Haidar, R; Pelouard, JL	Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas	OPTICS LETTERS	65	2012

Auteurs	Titre	Journal	Citations	Année
Lamponi, M; Keyvaninia, S; Jany, C; Poingt, F; Lelarge, F; de Valicourt, G; Roelkens, G; Van	Low-Threshold Heterogeneously Integrated	IEEE PHOTONICS TECHNOLOGY	50	2012
Thourhout, D; Messaoudene, S; Fedeli, JM; Duan, GH	InP/SOI Lasers With a Double Adiabatic Taper Coupler	LETTERS	50	2012
Ziebell, M; Marris-Morini, D; Rasigade, G; Fedeli, JM: Crozat, P: Cassan, E: Bouville, D:	40 Gbit/s low-loss silicon optical modulator	OPTICS EXPRESS	46	2012
Vivien, L Piceud Scloffree At Wentsch K. Sugenume At	based on a pipin diode			
Viana, B; Loiseau, P; Weichelt, B; Abdou-	Femtosecond Yb:CaGdAlO4 thin-disk	OPTICS LETTERS	38	2012
Ahmed, M; Voss, A; Graf, T; Rytz, D; Honninger, C; Mottay, E; Georges, P; Druon, F	oscillator			2022
Wertz, E; Amo, A; Solnyshkov, DD; Ferrier, L;	Deservation and Annull Floration Demonstrate 6			
Lemaitre, A; Kavokin, AV; Malpuech, G; Bloch,	1D Polariton Condensates	PHYSICAL REVIEW LETTERS	31	2012
Blandino, R; Leverrier, A; Barbieri, M; Etesse, J;	Improving the maximum transmission		20	2012
Grangier, P; Tualle-Brouri, R	key distribution using a noiseless amplifier	PHISICAL REVIEW A	- 23	2012
Harmand, M; Coffee, R; Bionta, MR; Chollet, M: French, D: Zhu, D: Fritz, DM: Lemke, HT:	Achieving few-femtosecond time-sorting at			
Medvedev, N; Ziaja, B; Toleikis, S; Cammarata,	hard X-ray free-electron lasers	NATURE PHOTONICS	71	2013
Jouguet, P; Kunz-Jacques, S; Leverrier, A; Grangier, P; Diamanti, E	Experimental demonstration of long- distance continuous-variable quantum key distribution	NATURE PHOTONICS	56	2013
Belacel, C; Habert, B; Bigourdan, F; Marquier,				
F; Hugonin, JP; de Vasconcellos, SM; Lafosse, X; Coolen, L; Schwob, C; Javaux, C; Dubertret,	Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas	NANO LETTERS	44	2013
B; Greffet, JJ; Senellart, P; Maitre, A				
Wegner, KD; Jin, ZW; Linden, S; Jennings, TL;	Quantum-Dot-Based Forster Resonance Energy Transfer Immunoassay for Sensitive		70	2012
Hildebrandt, N	Clinical Diagnostics of Low-Volume Serum Samples	ACSINANO	20	2015
Zaouter, Y; Guichard, F; Daniault, L; Hanna, M; Morin, F; Honninger, C; Mottay, E; Druon, F; Georges, P.	Femtosecond fiber chirped- and divided- pulse amplification system	OPTICS LETTERS	28	2013
Pierangelo, A; Nazac, A; Benali, A; Validire, P; Cohen, H: Novikova, T: Ibrahim, BH: Manhas, S:	Polarimetric imaging of uterine cervix: a	OPTICS EXPRESS	26	2013
Fallet, C; Antonelli, MR; Antonello-De Martino	case study			
Bai, Q; Perrin, M; Sauvan, C; Hugonin, JP; Lalanne, P	Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure	OPTICS EXPRESS	22	2013
Bonnin, A; Zahzam, N; Bidel, Y; Bresson, A	Simultaneous dual-species matter-wave accelerometer	PHYSICAL REVIEW A	21	2013
Thiery, S; Tondelier, D; Declairieux, C; Seo, G; Geffroy, B; Jeannin, O; Rault-Berthelot, J; Metivier, R; Poriel, C	9,9 '-Spirobifluorene and 4-phenyl-9,9 '- spirobifluorene: pure hydrocarbon small molecules as hosts for efficient green and	JOURNAL OF MATERIALS CHEMISTRY C	14	2014
Carleo, G; Becca, F; Sanchez-Palencia, L; Sorella, S; Fabrizio, M	Light-cone effect and supersonic correlations in one-and two-dimensional bosonic superfluids	PHYSICAL REVIEW A	10	2014
Fade, J; Panigrahi, S; Carre, A; Frein, L; Hamel, C; Bretenaker, F; Ramachandran, H; Alouini, M	Long-range polarimetric imaging through fog	APPLIED OPTICS	9	2014
Kim, CH; Bonnassieux, Y; Horowitz, G	Compact DC Modeling of Organic Field- Effect Transistors: Review and Perspectives	IEEE TRANSACTIONS ON ELECTRON DEVICES	9	2014
Ossikovski, R; Devlaminck, V	General criterion for the physical realizability of the differential Mueller matrix	OPTICS LETTERS	9	2014
Wentsch, KS; Weichelt, B; Gunster, S; Druon, F; Georges, P: Ahmed, MA: Graf, T	Yb:CaF2 thin-disk laser	OPTICS EXPRESS	8	2014
Chevalier, P; Bouchon, P; Pardo, F; Haidar, R	Electromagnetic modelization of spherical focusing on a one-dimensional grating thanks to a conical R splice model method.	JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A- OPTICS IMAGE SCIENCE AND	7	2014
Gharaibeh, MF: El Hassan, N: Al Shorman, MM:	thanks to a conicar p-spline modal method	VISION JOURNAL OF PHYSICS B-		
Bizau, JM; Cubaynes, D; Guilbaud, S; Sakho, I;	K-shell photoionization of B-like atomic nitrogen ions: experiment and theory	ATOMIC MOLECULAR AND	7	2014
brancaru, C, Miccaughini, Divi		OF TICAL PHILSICS		

Pôle 7 Matériaux : elaboration et propriétés